¿El futuro puede afectar al pasado?

Artículo publicado por Philip Ball el 3 de agosto de 2012 en physicsworld.com

Lo que haces hoy podría afectar a lo que sucedió ayer – esta es la extravagante conclusión de un experimento mental de física cuántica que se describe en el borrador de un artículo de Yakir Aharonov de la Universidad de Tel-Aviv en Israel y sus colegas.

Parece imposible, de hecho parece violar uno de los principios más valiosos de la ciencia – la causalidad – pero los investigadores dicen que las reglas del mundo cuántico conspiran para preservar la causalidad “ocultando” la influencia de las elecciones futuras hasta que realmente se realizan dichas elecciones.

El Tiempo © by Lanpernas 2.0


En el corazón de la idea está el fenómeno cuántico de la “no localidad”, en el cual hay dos o más partículas en estados interrelacionados o “entrelazados” que permanecen indeterminados hasta que se realiza una medida en una de ellas. Una vez tienen lugar las medidas, el estado de la otra partícula queda también fijado instantáneamente, sin importar lo lejos que esté. Albert Einstein señaló por primera vez esta “acción a distancia” instantánea en 1935, cuando defendió que esto significaba que la teoría cuántica debía ser incompleta. Los experimentos modernos han confirmado que esta acción instantánea es, de hecho, real, y ahora resulta clave para tecnologías prácticas de la cuántica tales como la criptografía y la computación cuántica.

Aharonov y sus colaboradores describen un experimento para un gran grupo de partículas entrelazadas. Defienden que, bajo ciertas condiciones, la elección del experimentador de una medida de los estados de las partículas pueden afectar a los estados de las partículas que estaban en un momento anterior, cuando se realizó una medida muy débil. En efecto, la medida “débil” anterior anticipa la elección realizada en la posterior medida “fuerte”.

4D en lugar de 3D

El trabajo se basa en una forma de pensar sobre el entrelazamiento conocida como “formalismo de vector de dos estados” (TSVF), propuesta por Aharonov hace tres décadas. El TSVF considera las correlaciones entre partículas en un espacio-tiempo 4D en lugar de en un espacio 3D. “En tres dimensiones parece algún tipo de influencia milagrosa entre dos partículas lejanas”, dice el colega de Aharonov, Avshalom Elitzur del Instituto Weizmann de Ciencia en Rehovot, Israel. “En un espacio-tiempo completo, es una interacción continua que se extiende entre eventos pasados y futuros”.

Aharonov y su equipo han descubierto ahora una notable implicación del TSVF que está relacionada con la cuestión de cuál es el estado de una partícula entre dos medidas – una versión cuántica del famoso problema de Einstein sobre cómo podemos estar seguros de si la Luna sigue ahí cuando no la estamos mirando. ¿Cómo saber cosas sobre las partículas sin hacer mediciones sobre ellas?. El TSVF demuestra que es posible lograr una información intermedia – haciendo una medida suficientemente “débil” sobre un grupo de partículas entrelazadas preparadas de la misma forma y calculando la media estadística.

Medidas sutiles

La teoría de la medida débil – propuesta y desarrollada inicialmente por Aharonov y su grupo en 1988 – define que es posible medir “sutilmente” o “débilmente” un sistema cuántico para lograr algo de información sobre una propiedad (por ejemplo, posición) sin perturbar apreciablemente la propiedad complementaria (momento) y, por tanto, la evolución futura del sistema. Aunque la cantidad de información obtenida para cada medida es minúscula, un promedio de múltiples medidas nos da una estimación precisa de las medidas de la propiedad sin perturbar su valor final.

Cada medida débil puede decirte algo sobre la probabilidad de distintos estados (valor de espín arriba o abajo, por ejemplo) – aunque con un gran margen de error – sin colapsar realmente las partículas en estados definidos, como sucedería con una medida fuerte. “Una medida débil cambia el estado medido y te da información sobre el estado localizado resultante”, dice Elitzur. “Pero realiza ambas tareas muy débilmente, y el cambio que genera en el sistema es más débil que la información que te proporciona”.

Como resultado, explica Elitzur, “cada medida débil aislada, por sí misma no te dice casi nada. Las medidas proporcionan un resultado fiable solo después de reunirlas todas. Entonces los errores se cancelan y pueden extraer algo de información sobre el conjunto como un todo”.

En el experimento mental de los investigadores, los resultados de estas medidas débiles están de acuerdo con aquellas de las posteriores medidas fuertes, en las que el experimentador elige libremente qué medida de orientación del espín medir – incluso aunque los estados de las partículas aún estén indeterminados tras las medidas débiles. Lo que esto significa, explica, es que dentro del TSVF “una partícula entre dos medidas posee los dos estados indicados por ambas, la pasada y la futura”.

La naturaleza es exigente

El inconveniente es que, solo añadiendo información adicional procedente de las medidas fuertes, se puede revelar lo que dice la medida débil “realmente”. La información ya estaba allí – pero codificada y solo mostrada en retrospectiva. Por lo que se conserva la causalidad, incluso aunque sea de una forma algo distinta a como la conocemos habitualmente. El porqué de esta censura no está claro, salvo desde una perspectiva metafísica. “Se sabe que la naturaleza es exigente con todo aquello que no parece consistente”, dice Elitzur. “Por lo que no va a manifestar un aprecio por la causalidad hacia el pasado – personas matando a sus abuelos y todo eso”.

Elitzur dice que algunos especialistas en óptica cuántica han expresado interés en llevar a cabo el experimento en laboratorio, lo que cree que no debería ser más difícil que en anteriores estudios sobre entrelazamiento.

Charles Bennett del Centro de Investigación T J Watson de IBM en Yorktown Heights, Nueva York,especialista en teoría de la información cuántica, no está convencido. Ve el TSVF simplemente como una forma de observar los resultados, y cree que los hallazgos pueden interpretarse sin ninguna “causalidad hacia el pasado”, por lo que los autores están creando un hombre de paja. “Para hacer que su hombre de paja parezca más fuerte, usan un lenguaje que oscurece la diferencia clave entre comunicación y correlación”, dice. Añade que es como un experimento de criptografía cuántica en el cual el emisor envía al receptor la clave de descifrado antes de enviar (o incluso decidir si envía) el mensaje, y luego afirma que es una especie de “anticipo” del mensaje.

Sin embargo, Aharonov y sus colegas sospechan que sus hallazgos podrían incluso tener implicaciones para el libre albedrío. “Nuestro grupo sigue dividido en cierto modo sobre estas cuestiones filosóficas”, dice Elitzur. La opinión de Aharonov, dice, “es algo talmúdica: todo lo que vas a hacer ya es conocido por Dios, pero aún tienes la capacidad de elección”.

El borrador del trabajo está disponible en el servidor de arXiv.


Autor: Philip Ball
Fecha Original: 3 de agosto de 2012
Enlace Original

Comparte:
  • Print
  • Digg
  • StumbleUpon
  • del.icio.us
  • Facebook
  • Twitter
  • Google Bookmarks
  • Bitacoras.com
  • Identi.ca
  • LinkedIn
  • Meneame
  • Netvibes
  • Orkut
  • PDF
  • Reddit
  • Tumblr
  • Wikio
This page is wiki editable click here to edit this page.

Like This Post? Share It

Comments (9)

  1. [...] "CRITEO-300×250", 300, 250); 1 meneos ¿El futuro puede afectar al pasado? http://www.cienciakanija.com/2012/08/22/el-futuro-puede-afectar-…  por likiniano hace [...]

  2. Dr. Astonished

    Joder, científicos de tomo y lomo con una cantidad de basura en la cabeza… Me viene a justificar el Talmud a la FQ… por Yahveh bendito…

  3. kaleb

    NO ENTENDI UN CARAJO

  4. Información Bitacoras.com…

    Valora en Bitacoras.com: Artículo publicado por Philip Ball el 3 de agosto de 2012 en physicsworld.com Lo que haces hoy podría afectar a lo que sucedió ayer – esta es la extravagante conclusión de un experimento mental de física cuántica que ……

  5. [...] pm y archivada en Fí­sica. Puedes seguir cualquier respuesta a esta entrada a través del feed RSS 2.0. Puedes dejar una respuesta, o trackback desde tu propio sitio web. [...]

  6. Artículos como el presente…te dejan anonadado: ¿El futuro puede afectar al pasado? Pero, de qué estamos hablando. Bien sabido es que la mecánica cuántica es extraña pero, pretender que lo que pase mañana estará afectando a lo que paso hace dos mil años…, no resulta extraño sino increíble.

    Por otra parte, debe ser mi enorme ignorancia pero, los autores del trabajo o no se explican con claridad o son, algo espesos al exponer sus ideas que, en no pocas ocasiones caen en la imprecisión y hasta recurren a la metafísica y, cuando eso ocurre…¡las cosas no andan nada claras! Cuando podemos leer:

    “El inconveniente es que, solo añadiendo información adicional procedente de las medidas fuertes, se puede revelar lo que dice la medida débil “realmente”. La información ya estaba allí – pero codificada y solo mostrada en retrospectiva. Por lo que se conserva la causalidad, incluso aunque sea de una forma algo distinta a como la conocemos habitualmente. El porqué de esta censura no está claro, salvo desde una perspectiva metafísica. “Se sabe que la naturaleza es exigente con todo aquello que no parece consistente”, dice Elitzur. “Por lo que no va a manifestar un aprecio por la causalidad hacia el pasado – personas matando a sus abuelos y todo eso”.

    El batiburrillo es descomunal y no parece muy científico incluir en la explicación … “El por qué de esta censura no está nada claro, salvo desde una perspectiva metafísica.” (?) Es decir, cuando no entendemos algo, nos desplazamos hasta la filosifía profunda del ser, o, ¿qué significa lo que pretende decir?

    El amigo Kaleb, por ahí arriba, nos dice de manera muy clara lo que piensa del artículo y, desde luego, su parte de razón sí que lleva el hombre.

    Todo esto viene a recordarme la Paradoja EPR:

    “A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener información útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas. Por otro lado, en un estado entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene contrapartida en el mundo de nuestras experiencias cotidianas.

    El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede saber la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

    La paradoja EPR está en contradicción con la teoría de la relatividad, ya que aparentemente se transmite información de forma instantánea entre las dos partículas.2 De acuerdo a EPR, esta teoría predice un fenómeno (el de la acción a distancia instantánea) pero no permite hacer predicciones deterministas sobre él; por lo tanto, la mecánica cuántica es una teoría incompleta.

    Esta paradoja (aunque, en realidad, es más una crítica que una paradoja), critica dos conceptos cruciales: la no localidad de la mecánica cuántica (es decir, la posibilidad de acción a distancia) y el problema de la medición. En la física clásica, medir un sistema, es poner de manifiesto propiedades que se encontraban presentes en el mismo, es decir, que es una operación determinista. En mecánica cuántica, constituye un error asumir esto último. El sistema va a cambiar de forma incontrolable durante el proceso de medición, y solamente podemos calcular las probabilidades de obtener un resultado u otro.”

    ¡Si que hemos comenzado bien la mañana!

  7. TXOMIN

    Una “predicción” futura puede alterar el presente, por tanto a partir de la acción realizada presente puede haber afectado al pasado, lo demás son pajas mentales.

  8. MR

    El artículo me parece interesante, conecta con las líneas cerradas de tiempo estudiadas por K. Gödel y otros autores más recientes. Las ecuaciones de Einstein para la RG admiten viajes teóricos al pasado y, desde el pasado, de regreso al presente. Un hipotético observador que viajase al pasado puede modificar su particular visión del presente en función de cómo procese lo que vio en el pasado. Estudios como éste, que ponen en solfa la casualidad, tienden a ser calificados de extravagantes en una época marcada por el causalismo y el tridimensionalismo.

    http://dynnamico.blogspot.com.es/

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos necesarios están marcados *