El universo: dónde se hace discreto el espacio-tiempo

Artículo publicado el 22 de abril de 2016 en SISSA

Nuestra experiencia sobre el espacio-tiempo es que se trata de un objeto continuo, sin huecos ni discontinuidades, tal como se describe en la física clásica. Sin embargo, en algunos modelos de gravedad cuántica, la textura del espacio-tiempo es “granular” a escalas diminutas (por debajo de la conocida como escala de Planck, 10-33 cm), como si hubiese una mezcolanza variable de sólidos y vacíos (como una espuma compleja). Uno de los mayores problemas de la física actual es comprender el paso de una descripción continua a una discreta del espacio-tiempo: ¿existe un cambio abrupto o es una transición gradual? ¿Dónde ocurre este cambio?

La separación entre un mundo y otro crea problemas para la física: por ejemplo, ¿cómo describir la gravedad – tan bien explicada en la física clásica – en el contexto de la mecánica cuántica? La gravedad cuántica es, de hecho, un campo de estudio en el cual no existe aún ninguna teoría consolidada. Sin embargo, hay “escenarios” que ofrecen posibles interpretaciones de la gravedad cuántica sujeta a distintas restricciones, y que esperan confirmación, o refutación, experimental.

Espuma cuántica

Espuma cuántica

Seguir Leyendo…

Más allá de las WIMPs: Explorando alternativas a la materia oscura

Artículo publicado por Matt Williams el 21 de marzo de 2016 en Universe Today

El modelo cosmológico estándar nos dice que sólo el 4,9% del universo está compuesto por materia común (es decir, la que podemos ver), mientras que el resto se compone de un 26,8% de materia oscura, y un 68,3% de energía oscura. Tal como sugieren sus nombres, no podemos verlas, por lo que su existencia debe deducirse en base a los modelos teóricos y observaciones de la estructura a gran escala del universo, y sus aparentes efectos gravitatorios sobre la materia visible.

Desde que se propuso por primera vez, no ha habido pocas sugerencias sobre qué aspecto podrían tener las partículas de materia oscura. No hace mucho, los científicos propusieron que la materia oscura consiste en Partículas Masivas de Interacción Débil (WIMPs, por sus siglas en inglés), que tienen aproximadamente 100 veces la masa de un protón, pero interactúan como los neutrinos. Sin embargo, todos los intentos por encontrar las WIMPs usando experimentos en colisionadores no han arrojado resultados. Por esto, los científicos han estado explorando últimamente la idea de que la materia oscura podría estar compuesta de algo completamente distinto.

Universo oscuro

Universo oscuro Crédito: AMNH

Seguir Leyendo…

Nuevas medidas apuntan a un problema con la energía oscura

Artículo publicado por Clara Moskowitz el 11 de abril de 2016 en Scientific American

Una nueva medida de lo rápidamente que se expande el universo no concuerda con las estimaciones basadas en los inicios del universo, apuntando potencialmente hacia una ruptura con el modelo estándar de la física.

Nuestro universo se separa, la galaxias se alejan unas de otras cada vez más rápidamente. Los científicos han conocido esta aceleración desde finales de la década de 1990, pero sea lo que sea lo que la esté provocando — algo conocido como energía oscura — sigue siendo un misterio. Ahora, las últimas medidas de lo rápidamente que crece el cosmos complican aún más el guión: el universo parece estar hinchándose más rápidamente de lo que debería, incluso tras tener en cuenta la expansión acelerada provocada por la energía oscura.

Energía oscura

Energía oscura

Seguir Leyendo…

El exceso de rayos gamma no procede de la materia oscura

Artículo publicado el 18 de marzo de 2016 en el CERN

Un exceso de rayos gamma a energías de pocos GeV detectado hace tiempo podría ser un buen candidato a señal de materia oscura (CERN Courier April 2014 p13). Dos años más tarde, un par de artículos de investigación refutan esta interpretación demostrando que el exceso de fotones detectado por el Telescopio Espacial de Rayos Gamma Fermi no está distribuido tan equitativamente como se esperaría de una aniquilación de materia oscura. En lugar de esto, el agrupamiento revela una población de fuentes puntuales sin resolver, probablemente púlsares de milisegundo.

Mapa de rayos gamma de Fermi

Mapa de rayos gamma de Fermi

Seguir Leyendo…

Nueva confusión sobre el origen de un enigmático estallido de radio

Artículo publicado por Mark Zastrow el 2 de marzo de 2016 en Nature News

Un estudio sugiere que los estallido de radio rápidos pueden repetirse, pero se pone en duda un hallazgo sobre el origen de otro estallido.

Tres informes en menos de una semana tienen inquietos a los astrónomos sobre el misterioso origen de los cortos y brillantes pulsos de ondas de radio conocidos como estallidos de radio rápidos (FRBs).

Arecibo

Arecibo Crédito: Daniel Schuette

Seguir Leyendo…

Las supernovas Ia no son tan estándar después de todo

Artículo publicado por Belinda Smith el 29 de febrero de 2016 en Cosmos Magazine

Se usan en astronomía para medir la expansión del universo y estudiar la energía oscura, pero las supernovas de tipo Ia no son tan consistentes como se pensada – y parecen depender de su combustible.

Un tipo de estrella en explosión – las supernovas Ia – se conoce dentro de los círculos cosmológicos como “candela estándar” por su consistente brillo, lo que permite a los astrónomos calcular lo lejos que se encuentran de la Tierra.

Tycho

Supernova de Tycho de tipo Ia

Seguir Leyendo…

Introducción a los agujeros negros

Artículo publicado por Ali Sundermier el 12 de enero de 2016 en Symmetry Magazine

Déjate introducir en el enigmático mundo de los agujeros negros.

Imagina, en algún lugar de la galaxia, el cadáver de una estrella tan densa que rasga el tejido del espacio y del tiempo. Tan densa que devora cualquier materia a su alrededor que esté lo suficientemente cerca, atrayéndola en un remolino de gravedad del que nada, ni siquiera la luz, puede escapar.

Y una vez que esta materia cruza el punto de no retorno, el horizonte de sucesos, cae en una espiral sin remedio hacia un punto infinitamente pequeño, un punto donde el espacio-tiempo está tan curvado que todas nuestras teorías colapsan: la singularidad. Nadie sale vivo de allí.

Los agujeros negros suenan a algo demasiado extraño como para ser verdad, pero en realidad son bastante comunes en el espacio. Hay docenas de ellos conocidos y, probablemente, millones más en la Vía Láctea, y miles de millones merodeando por ahí fuera. Los científicos también creen que podría haber agujeros negros supermasivos en el centro de cada galaxia, incluyendo la nuestra. La formación y dinámica de estas monstruosas curvaturas del espacio-tiempo ha desconcertado a los científicos desde hace siglos.

The View Near A Black Hole

Agujero negro Crédito: April Hobart

Seguir Leyendo…

El último artículo de Hawking sobre agujeros negros divide a los físicos

Artículo publicado por Davide Castelvecchi el 27 de enero de 2016 en Nature News

Algunos dan la bienvenida a su último trabajo como una nueva forma de resolver un problema con los agujeros negros; otros no están seguros de su valor.

Casi un mes después de que Stephen Hawking y sus colegas publicasen un artículo en línea sobre agujeros negros1, los físicos no se ponen de acuerdo sobre su significado.

Algunos apoyan las afirmaciones del borrador — que proporciona una prometedora forma de abordar un obstáculo conocido como la paradoja de la información de los agujeros negros, que Hawking identificó hace más de 40 años. “Creo que hay un sentimiento general de entusiasmo por tener una nueva forma de estudiar cosas que puede que nos saquen del atasco en el que nos encontramos”, comenta Andrew Strominger, físico en la Universidad de Harvard en Cambridge, Massachusetts, y coautor del último artículo.

Hubble Helps Find Smallest Known Galaxy Containing a Supermassive Black Hole

Impresión artística de un agujero negro Crédito: NASA

Seguir Leyendo…

¿El neutrino es su propia antipartícula?

Artículo publicado por Signe Brewster el 20 de enero de 2016 en Symmetry Magazine

La misteriosa partícula podría tener la clave de por qué la materia prevaleció sobre la antimateria en los inicios del universo.

Casi todas las partículas tienen un homólogo de antimateria: una partícula con la misma masa pero carga opuesta, entre otras características.

Esto parece aplicarse a los neutrinos, minúsculas partículas que nos atraviesan constantemente. A partir de las partículas liberadas cuando un neutrino interactúa con la materia, los científicos pueden discernir si han captado un neutrino contra un antineutrino.

Superkamiokande

Detector Super-Kamiokande

Seguir Leyendo…

Un nuevo método para estudiar el inicio del universo

Artículo publicado por Christine Pulliam el 25 de enero de 2016 en CfA

¿Cómo empezó el universo? ¿Y qué pasó después del Big Bang? Los cosmólogos se han realizado estas preguntas desde el descubrimiento de que nuestro universo se expande. Las respuestas no son fácilmente determinables. Los inicios del cosmos están ocultos a la visión de los telescopios más potentes, aunque las observaciones que realizamos hoy pueden dar pistas del origen del universo. Una nueva investigación sugiere una novedosa forma de estudiar el inicio del espacio y el tiempo para determinar cuál de las teorías propuestas es la correcta.

El escenario teórico más ampliamente aceptado para el inicio del universo es la inflación, que predice que el universo se expandió a un ritmo exponencial en la primera fracción de segundo. Sin embargo, se han sugerido una variedad de escenarios alternativos, algunos prediciendo un Big Crunch anterior al Big Bang. El truco está en encontrar medidas que puedan distinguir entre estos escenarios.

Relojes primordiales estándar

Relojes primordiales estándar Crédito: Yi Wang y Xingang Chen

Seguir Leyendo…

1 2 3 4